અવલોકનોનાં બે ગણના આંકડાઓ નીચે મુજબ આપેલ છે :
કદ | મધ્યક | વિચરણ | |
અવલોકન $I$ | $10$ | $2$ | $2$ |
અવલોકન $II$ | $n$ | $3$ | $1$ |
જો બંને અવલોકનોનાં સંયુક્ત ગણનો વિચરણ $\frac{17}{9}$ હોય, તો $n$ નું મૂલ્ય ..... છે.
$8$
$10$
$5$
$15$
આપેલ માહિતીમાં $n$ અવલોકનો ${x_1},{x_2},......,{x_n}.$ છે જો $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ અને $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n $ હોય તો આ માહિતીનો પ્રમાણિત વિચલન મેળવો
જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.
જો માહિતી $x_1, x_2, ...., x_{10}$ એવી હોય કે જેથી પ્રથમ ચાર અવલોકનોનો મધ્યક $11$ અને બાકીના છ અવલોકનોનો મધ્યક $16$ તથા બધા અવલોકનોના વર્ગોનો સરવાળો $2,000$ થાય તો આ માહિતીનું પ્રમાણિત વિચલન મેળવો
$3,7,12, a, 43-a$ નું વિચરણ, એક પ્રાકૃતિક સંખ્યા થાય તેવા $a \in N$ ના મૂલ્યોની સંખ્યા $\dots\dots\dots$ છે. (મધ્યક $=13$)
ધારોકે $3 n$ સંખ્યાનું વિચરણ $4$ આપેલ છે. જો આ ગણમાં પ્રથમ $2 n$ સંખ્યાનો મધ્યક $6$ હોય અને બાકીની સંખ્યા $n$ નો મધ્યક $3$ છે. એક નવો ગણ બનાવીએ કે જેમાં પ્રથમ $2 n$ સંખ્યામાં $1$ ઉમેરીએ અને પછીની $n$ સંખ્યામાંથી $1$ બાદ કરીયે તો આ નવા ગણનું વિચરણ $k$ હોય તો $9 k$ મેળવો.